Textbook: An introduction to mathematical biology by Linda J.S. Allen
Supplemat: Nonlinear dynamics and chaos by Steven Stroy att
Def. I.1 A difference equation of order k has the form

$$
f\left(x_{t+k}, x_{t+k-1}, \ldots, x_{t}, t\right)=0, \quad t \in \mathbb{N}=\{0,1,2, \ldots\}
$$

where $x_{i} \in \mathbb{R}$, and f must depend on both x_{t+k} and x_{t}
Note: x_{i} are called the state variables
Def. A difference equation is autonomous if f does not explicitly depend on t and nonantonomous otherwise.

Commonly encountered form: $x_{t+k}+\sum_{i=1}^{k} a_{i}\left(x_{t+k-1,} x_{t+k-2}, \ldots, x_{t}, t\right) x_{t+k-i}=b_{t}$,

$$
t \in \mathbb{N}, \quad a_{i}\left(x_{t+k-1,}, \ldots, x_{t}, t\right) \in \mathbb{R}, \quad b_{t} \in \mathbb{R}
$$

order is k if $a_{k} \neq 0$.
Def. 1.2 A difference equation that can be written as

$$
x_{t+k}+\sum_{i=1}^{k} a_{i}(t) x_{t+k-i}=b_{t}
$$

is called linear. Otherwise, nonlinear.
If a difference equation is linear and $b_{t}=0 \forall \in \in \mathbb{N}$, then it is homogeneous. Otherwise, it is nonhomogeneous).

Def. 1.3 A system of k first-order difference equations can be written a

$$
x_{i}(t+1)=f_{i}\left(x_{1}(t), \ldots, x_{k}(t), t\right), \quad \bar{L}=1, \ldots, k
$$

If $x_{i}(t+1)=f_{i}\left(x_{1}(t), \ldots, x_{k}(t)\right) \quad \forall i \in\{1, \ldots, k\}$, then it is autonomous
If $x_{i}(t+1)=\sum_{j=1}^{k} a_{i j}(t) x_{j}(t)+b_{i}(t), \quad i=1, \ldots, k$, then it is linear
If in addition, $b_{i}(t) \equiv 0$, for $i=1, \ldots, k$, then it is homogeneous.
Def. 1.4 A solution to a difference equation is a function $x: \mathbb{N} \rightarrow \mathbb{R}$ that makes the difference equations true.
A solution to a system of difference equations is a function $x: \mathbb{N} \times\{1 \ldots k\} \rightarrow \mathbb{R}$ that makes the difference equators true. Often, we write a vector $X(t)=\left(x_{1}(t), \cdots, x_{k}(t)\right)^{\top}$ for the solution.

